Field Testing and Error Analysis of Cavity Ringdown Spectroscopy Instruments Measuring CO2

Scott J. Richardson, Natasha L. Miles, Kenneth J. Davis, and Eric. R. Crosson

ring2.psu.edu

Field Testing of CRDS Systems

- Five CRDS systems deployed as part of the North American Carbon Program (NACP) Mid Continent Intensive (MCI)
- Termed "Ring2"

- "Ring" of towers around the state of Iowa

Field Testing of CRDS Systems

- Five CRDS systems deployed as part of the North American Carbon Program (NACP) Mid Continent Intensive (MCI)
- Termed "Ring2"
 - "Ring" of towers around the state of Iowa
- Systems tested and calibrated at PSU facility
- Two NOAA tanks deployed with each system
 - Sampled every 22 hours
 - Used to account for system drift
 - Examine long-term stability of each system

Field Testing of CRDS Systems

- Early CADS (CO2) systems used in Ring2
 - SN 01 through 10
- Measure H2O using an HDO line instead of an H20 line
 - Will be important later in talk
 - Current systems measure H2O line

Lab Testing of CRDS Systems

- CRDS systems calibrated using 4 NOAA calibrated CO2 standards
 – April 2007
- 3 day lab test
 - No recalibration during 3 days
 - All 5 systems sample from 4 liter buffer volume
 - Air sample NOT dried

Difference from the mean using systems 2, 3 and 4

Deployment Method

- Systems deployed inside buildings
- Sample 2 levels
 - 110 to 140 m agl, 45 min of every hour
 - 30 m agl, 15 min every hour
- Real-time communications via cell phone data modems
 - Remote login for troubleshooting
- Daily data files automatically emailed
- Quick looks posted to web page

Typical Deployments

Kewanee, IL

Round Lake, MN

Sample 2-Days of Data

System Replaced Galesville (CADS08, CADS10) 2008 2007 2 2 X System Calibration 1.5 1.5 date 1 1 Reference Gas Error (ppm) 0.5 0.5 Error (ppm) 0 0 -0.5 0 -0.5 -1 -1 -1.5 -1.5 -2<u>`</u>0 -2 150 50 150 100 250 200 350 40 300 DOY DOY

- Daily difference between 2 reference tanks and known values
- Result is applied to daily field calibration

Centerville (CADS06)

Water problems

Mead (CADS01, CADS07)

Round Lake (CADS03, CADS02, CADS09)

July 1 **Oct 31**

Round-Robin Tests

- 4 NOAA-calibrated tanks brought to each site
 - February 2008
 - April 2009
- Average errors for each site and each tank are less than 0.15 ppm
- Does not test water vapor correction

Round robin test, Feb 2008

Site	Tank 1 error (ppm)	Tank 2 error (ppm)	Tank 3 error (ppm)	Tank 4 error (ppm)	Mean
Kewanee	-0.097	-0.115	-0.049	-0.279	-0.135
Centerville	-0.155***	0.020	-0.158 ***	Unstable	-0.098
Mead	-0.071	-0.074	0.093	-0.093	-0.036
Round Lake	-0.047	Not tested	-0.210	Not tested	-0.129
Galesville	-0.174	-0.162	-0.018	-0.190 ***	-0.093
Mean	-0.109	-0.083	-0.068	-0.13	

*** Only 1 cal cycle

> 0.1 ppm

Contributions to analytical uncertainty	PSU CRDS	NOAA-ESRL NDIR
Calibration scale uncertainty	0.1 ppm	0.07 ppm
Standard equilibration uncertainty	0.05 ppm	0.05 ppm
Curve fitting errors	0.05 ppm	0.05 ppm
CO2 isotopic effects	0.05 ppm	
Errors due to water vapor effects		0.05 ppm
Analyzer drift uncertainty		
Cavity pressure control error		0.1 ppm
Cavity temperature control error		
Error due to HDO/H2O isotopic ratio		-
Total analytical uncertainty with HDO		0.1
Total analytical uncertainty without		0.1

Contributions to analytical uncertainty	PSU CRDS	NOAA-ESRL NDIR
Calibration scale uncertainty	0.1 ppm	0.07 ppm
Standard equilibration uncertainty	0.05 ppm	0.05 ppm
Curve fitting errors	0.05 ppm	0.05 ppm
CO2 isotopic effects	0.05 ppm	
Errors due to water vapor effects	???	0.05 ppm
Analyzer drift uncertainty		
Cavity pressure control error		0.1 ppm
Cavity temperature control error		
Error due to HDO/H2O isotopic ratio		-
Total analytical uncertainty with HDO		0.1
Total analytical uncertainty without		0.1

Accuracy of H20 Measurement

 NOAA-calibrated system tested at Oregon State

CO2 error induced by H20 error < 0.05 ppm</p>

Contributions to analytical uncertainty	PSU CRDS	NOAA-ESRL NDIR
Calibration scale uncertainty	0.1 ppm	0.07 ppm
Standard equilibration uncertainty	0.05 ppm	0.05 ppm
Curve fitting errors	0.05 ppm	0.05 ppm
CO2 isotopic effects	0.05 ppm	
Errors due to water vapor effects	0.05 ppm	0.05 ppm
Analyzer drift uncertainty		
Cavity pressure control error		0.1 ppm
Cavity temperature control error		
Error due to HDO/H2O isotopic ratio		-
Total analytical uncertainty with HDO		0.1
Total analytical uncertainty without		0.1

Contributions to analytical uncertainty	PSU CRDS	NOAA-ESRL NDIR
Calibration scale uncertainty	0.1 ppm	0.07 ppm
Standard equilibration uncertainty	0.05 ppm	0.05 ppm
Curve fitting errors	0.05 ppm	0.05 ppm
CO2 isotopic effects	0.05 ppm	
Errors due to water vapor effects	0.05 ppm	0.05 ppm
Analyzer drift uncertainty	???	
Cavity pressure control error		0.1 ppm
Cavity temperature control error		
Error due to HDO/H2O isotopic ratio		-
Total analytical uncertainty with HDO		0.1
Total analytical uncertainty without		0.1

Centerville (CADS06)

- Daily difference between 2 reference tanks and known values
- Result is applied to daily field calibration
- Difference between daily calibrations gives us info about analyzer drift error

Analyzer Drift Uncertainty

May 2007 - July 2008

- Drift uncertainty
 - Majority of points < 0.15 ppm uncertainty using daily calibrations
 - Improved system performance with software upgrades

Analyzer Drift Uncertainty

- Drift uncertainty
 - Majority of points < 0.1 ppm

Contributions to analytical uncertainty	PSU CRDS	NOAA-ESRL NDIR
Calibration scale uncertainty	0.1 ppm	0.07 ppm
Standard equilibration uncertainty	0.05 ppm	0.05 ppm
Curve fitting errors	0.05 ppm	0.05 ppm
CO2 isotopic effects	0.05 ppm	
Errors due to water vapor effects	0.05 ppm	0.05 ppm
Analyzer drift uncertainty	0.1 ppm	
Cavity pressure control error		0.1 ppm
Cavity temperature control error		
Error due to HDO/H2O isotopic ratio		-
Total analytical uncertainty with HDO		0.1
Total analytical uncertainty without		0.1

Intrinsic strength of CRDS technology is that measurements are absolute within the limits of the temperature and pressure control of the gas.

- Cavity TEMP controlled to << 20 mK – Error of 0.004 ppm (1-sigma)
- Cavity PRES controlled to < 0.03 Torr
 Error of 0.006 ppm (1-sigma)

Contributions to analytical uncertainty	PSU CRDS	NOAA-ESRL NDIR
Calibration scale uncertainty	0.1 ppm	0.07 ppm
Standard equilibration uncertainty	0.05 ppm	0.05 ppm
Curve fitting errors	0.05 ppm	0.05 ppm
CO2 isotopic effects	0.05 ppm	
Errors due to water vapor effects	0.05 ppm	0.05 ppm
Analyzer drift uncertainty	0.1 ppm	
Cavity pressure control error	0.006 ppm	0.1 ppm
Cavity temperature control error	0.004 ppm	
Error due to HDO/H2O isotopic ratio		-
Total analytical uncertainty with HDO		0.1
Total analytical uncertainty without		0.1

Contributions to analytical uncertainty	PSU CRDS	NOAA-ESRL NDIR
Calibration scale uncertainty	0.1 ppm	0.07 ppm
Standard equilibration uncertainty	0.05 ppm	0.05 ppm
Curve fitting errors	0.05 ppm	0.05 ppm
CO2 isotopic effects	0.05 ppm	
Errors due to water vapor effects	0.05 ppm	0.05 ppm
Analyzer drift uncertainty	0.1 ppm	
Cavity pressure control error	0.006 ppm	0.1 ppm
Cavity temperature control error	0.004 ppm	
Error due to HDO/H2O isotopic ratio	???	-
Total analytical uncertainty with HDO		0.1
Total analytical uncertainty without		0.1

HDO Effects

- Earliest CRDS measured HDO line instead of H2O line
- Atmospheric variability of HDO/H2O isotopic ratio results in an error in the H2O measurement
- Results in CO2 error
 - Different from "normal" water vapor error
- 2 CRDS systems now measuring both H2O and HDO to examine variability and CO2 error
 - 50 part in 1000 change in HDO/H2O isotopic ratio = 0.2 ppm CO2 error

HDO Effects

Contributions to analytical uncertainty	PSU CRDS	NOAA-ESRL NDIR
Calibration scale uncertainty	0.1 ppm	0.07 ppm
Standard equilibration uncertainty	0.05 ppm	0.05 ppm
Curve fitting errors	0.05 ppm	0.05 ppm
CO2 isotopic effects	0.05 ppm	
Errors due to water vapor effects	0.05 ppm	0.05 ppm
Analyzer drift uncertainty	0.1 ppm	
Cavity pressure control error	0.006 ppm	0.1 ppm
Cavity temperature control error	0.004 ppm	
Error due to HDO/H2O isotopic ratio	0.25 ppm ***	-
Total analytical uncertainty with HDO		0.1
Total analytical uncertainty without		0.1

Contributions to analytical uncertainty	PSU CRDS	NOAA-ESRL NDIR
Calibration scale uncertainty	0.1 ppm	0.07 ppm
Standard equilibration uncertainty	0.05 ppm	0.05 ppm
Curve fitting errors	0.05 ppm	0.05 ppm
CO2 isotopic effects	0.05 ppm	
Errors due to water vapor effects	0.05 ppm	0.05 ppm
Analyzer drift uncertainty	0.1 ppm	
Cavity pressure control error	0.006 ppm	0.1 ppm
Cavity temperature control error	0.004 ppm	
Error due to HDO/H2O isotopic ratio	0.25 ppm ***	-
Total analytical uncertainty with HDO	0.3	0.1
Total analytical uncertainty without		0.1

Contributions to analytical uncertainty	PSU CRDS	NOAA-ESRL NDIR
Calibration scale uncertainty	0.1 ppm	0.07 ppm
Standard equilibration uncertainty	0.05 ppm	0.05 ppm
Curve fitting errors	0.05 ppm	0.05 ppm
CO2 isotopic effects	0.05 ppm	
Errors due to water vapor effects	0.05 ppm	0.05 ppm
Analyzer drift uncertainty	0.1 ppm	
Cavity pressure control error	0.006 ppm	0.1 ppm
Cavity temperature control error	0.004 ppm	
Error due to HDO/H2O isotopic ratio	0.25 ppm ***	-
Total analytical uncertainty with HDO	0.3	0.1
Total analytical uncertainty without	0.1	0.1

Conclusions

- 5 CRDS systems deployed early 2007
- Will remain in the field until Dec. 2009
- Round-robin tests verified accuracy
- Excellent long-term stability of systems
- Overall system error ~0.3 ppm
 Post calibrations should decrease error
- CRDS error today ~0.1 ppm

Seasonal cycle

- ICDC Talks Friday
- N. Miles data analysis and comparison to models
- A. Schuh MCI overview, model results
- K. Corbin modeling results

Seasonal cycle

- ICDC Talks Friday
- N. Miles data analysis and comparison to models
- A. Schuh MCI overview, model results
- K. Corbin modeling results

Seasonal cycle

- ICDC Talks Friday
- N. Miles data analysis and comparison to models
- A. Schuh MCI overview, model results
- K. Corbin modeling results

End

Data availability

Summary

- 5 CRDS systems deployed in early 2007
- Satellite measurements to provide much more frequently sampled [CO2] in the free troposphere
- Ring 2 network designed to over sample the region; large gradients observed within the ring in 2007 and 2008
- Will be used to calculate the regional flux for comparison with bottom-up methods
- Ring 2 slated to be discontinued as of Oct 2008, but could be used to evaluate satellite [CO2] results

How do Ring 2 analytical uncertainties compare?

Comparison with NOAA ESRL GMD

- One system tested at NOAA ESRL for ~45 days
- NOAA Licor-based system air sample dried
- CADS system did not dry sample
 - Water vapor content measured using a water line
 - Corrected CO2 for moisture
- Difference between the two measurements
 < ~0.15 ppm for 90% of measurements
 - Some error due to timing of systems
- RMS difference over 45 days = 0.02 ppm

= analyzer drift uncertainty + 0.07 ppm calibration scale uncertainty + smaller terms Does not include sample equilibration error or real atmospheric variability

+

Comparison with NOAA ESRL GMD

Most points < 0.15 ppm with calibrations every four hours

- Large spatial gradient! - as large as continental-scale sites despite being separated by 500 km at most
- Associated changes in FT CO2 are unknown; satellite CO2 can fill this gap

- Strong coherent seasonal cycle across stations; synoptic variance
- 50 ppm drawdown!
 - Typical forest signal is 20-30 ppm
 - Agriculture (esp corn) has huge signal

Spatial gradients

Differences as large as 40 - 50 ppm between Ring 2 sites! On other days, the difference is less than 5 ppm

Example of model results of high- and low-gradient day

2007

2008

Cavity Ring-Down Spectroscopy

- Picarro, Inc. has developed an ultra-sensitive trace gas monitoring system. Advantages include:
 - •High precision and accuracy
 - < 0.1 ppm accuracy
 - Long-term stability: days to weeks
 - 1.5-sec sample precision and accuracy of ≤ 0.2 ppm and in tests
 - •Measurement rate in seconds rather than minutes
 - •No drying is required; water vapor is measured and correction to CO2 is applied
 - •Stable and robust long-term measurement

Kewanee, IL 100 ft agl 460 ft agl

Outline

- Seasonal patterns of CO2 mixing ratios
- Profiles
- Synoptic variability
- Spatial variability / coherent response to climate How do satellite measurements fit

in?

- NACP's Mid-Continent Intensive
- Ring 2: network of CO2 measurements
 - Reliability, precision/accuracy of Cavity Ring-Down Sensors
 - Uncertainty estimates, water vapor correction
 - Spatial gradients observed in region

The role of Ring 2 in the Mid-Continent Intensive

- Add regional network of 5 communications-tower based atmospheric CO2 obs in the midcontinent intensive region
 - April 2007 through November 2009
 - In addition to the long-term atmospheric CO2 observing network
 - NOAA CMD all towers
 - Aircraft profiles
 - Well-calibrated CO2 measurements on AmeriFlux towers
- Plan: to "oversample" the atmosphere in the study region for more than a full year
- Inversions to produce maps of fluxes of CO2 for region (CSU)

North American Carbon Program Mid-Continental Intensive

Cavity Ring Down systems

- Kewanee, IL
- Centerville, IA
- Mead, NE
- Round Lake, MN
- Galesville, WI

PSU Ameriflux systems

- Ozarks, MO
- Mead, NE

NOAA Tall Towers

- West Branch, IA
- WLEF, WI

Uncertainty estimates (NOAA; A. Andrews)

- Analytical uncertainty
 - Calibration scale uncertainty (0.07 ppm)
 - Analyzer drift uncertainty (typically < 0.1 ppm)*
 - Standard equilibration uncertainty (typ <0.05 ppm)
 - Curve fitting errors (typ <0.05 ppm)
 - Differences in water content between sample and standards (typ < 0.05 ppm)*
- Total uncertainty = analytical uncertainty + sample equilibration error and real atmospheric variability

**Shown in red are the points most likely to be different with the Ring 2 systems

Analyzer drift uncertainty + 0.07 ppm calibration scale uncertainty

= analyzer drift uncertainty + 0.07 ppm calibration scale uncertainty + smaller terms Does not include sample equilibration error or real atmospheric variability

Water vapor correction

- Sample not dried; water vapor is measured and [CO2] is corrected
- Leads to additional uncertainty
- Further tests in progress
 - nafion dryer
 - bubbler

Continuous, well-calibrated CO2 Measurements in North America Manitoba (BOREAS-NOBS Western Peatland Saskatchewan (BERMS) Fraserdale ⊣ov∖lan¢ Fort Peck OR Transect O Argyle Sable Island 0 Harvard RoundLak 🏷 Martha's Vineyard Galesville West Brand Sutro Storm Feak Mead Walnut Grove Hidden Peak Kewanee Canaan Val Centerville 0 Fraser rgan-Monr Entrada 🖡 ield Ozarks Roof Butte ARM-CART estnut Rig Moody (KWK) ~500 km PSU "Ameriflux" sites PSU "Ring 2" sites in support - Canaan Valley, WV (7 m AGL) of NACP MCI Chestnut Ridge, TN (61 m AGL) - Centerville, IA (30 & 110 m AGL) - Ozark, MO (30 m AGL) - Round Lake, MN (30 & 110 m AGL) - Fort Peck, MT (3 m AGL) - Kewanee, IL (30 & 140 m AGL) - Galesville, WI (30 & 120 m AGL) - Mead, NE (30 & 120 m AGL) Mead (Verma) (6 m AGL)

Types of instrumentation

- LICOR two-cell infrared absorption
 - NOAA sites,
 Canadian sites,
 Harvard, ARM-CART
- LICOR single-cell infrared absorption (new low-cost systems)
 - PSU Ameriflux sites, NCAR sites, Oregon State, Indiana
 - Calibrated every 4 hours with 4 cal tanks
 - System must be dried
- Cavity ring-down spectroscopy

- Ring 2

•

Introduction

- CO2 concentration measurements
 - Commonly made using non-dispersive infrared spectroscopy (NDIR)
 - Requires dried air sample
 - Requires frequent (~hourly) system calibration
- Cavity Ringdown Spectroscopy (CRDS) proving to be a reliable method for trace gas monitoring

– Picarro, Inc. systems discussed here

Cavity Ringdown Spectroscopy

- Laser-based technique
 - High precision and accuracy
 - 1.5-sec sample precision and accuracy of ≤ 0.2 ppm
 - 1-min accuracy < 0.1 ppm
 - Long-term stability: days to weeks or months
 - No drying is required
 - water vapor is measured and correction to CO2 is applied
 - Stable and robust long-term measurement

Cavity Ringdown Spectroscopy

The basic measurement algorithm is:

- 1. Tune laser and cavity to desired wavelength
- 2. Inject light into the cavity (laser resonant with cavity)
- 3. Once light circulating in the cavity hits a threshold, stop injecting
- 4. Measure decay time of light in cavity
- 5. Compare decay time to that of an off-resonance cavity
- 6. Repeat

Introduction of a gas sample

Ringdown curve dictated by cavity mirror loss

Ringdown time dictated by cavity mirror loss AND absorption by molecules; ringdown time shortens

CRDS >Very Long effective path length (~10-20 km)

Round robin test, Feb 2008

Site	Tank 1 error (ppm)	Tank 2 error (ppm)	Tank 3 error (ppm)	Tank 4 error (ppm)	Mean
Kewanee	-0.097	-0.115	-0.049	-0.279	-0.135
Centerville	-0.155***	0.020	-0.158 ***	Unstable	-0.098
Mead	-0.071	-0.074	0.093	-0.093	-0.036
Round Lake	-0.047	Not tested	-0.210	Not tested	-0.129
Galesville	-0.174	-0.162	-0.018	-0.190 ***	-0.093
Mean	-0.109	-0.083	-0.068	-0.13	

> 0.1 ppm> 0.2 ppm

- 4 NOAA-calibrated tanks brought to each site
 - February 2008
 - April 2009

- Average errors for each site and each tank are less than 0.15 ppm
- Doesn't test water vapor correction
- *** Only 1 cal cycle

